

    
      
          
            
  
Welcome to DeltaCode’s documentation!

Welcome to DeltaCode Documentation!


Contents:


	DeltaCode Documentation








            

          

      

      

    

  

    
      
          
            
  
DeltaCode Documentation

Welcome to the DeltaCode Documentation.



	Comprehensive Installation
	Before Installing

	System Requirements

	Prerequisites

	Installation on Linux and Mac

	Installation on Windows

	Un-installation

	Using the docker image for testing DeltaCode

	Installation from Source Code: Git Clone

	Installation as a library: via pip





	Deltacode Output: Format, Fields and Structure
	Output Formats

	Overall Structure





	Deltacode Scoring
	Delta Objects

	License Additions and Changes

	Copyright Holder Additions and Changes

	Moved, Removed and Unmodified





	Development
	Code layout and conventions

	Running tests

	Thirdparty libraries and dependencies management





	JSON to CSV Conversion

	Release Process
	Steps to cut a new release:





	Google Summer of Code 2021 - Final report
	Project: Virtual Codebase support in DeltaCode

	Project Overview

	Main Objectives of the project

	The Project

	Pull Requests

	Links












            

          

      

      

    

  

    
      
          
            
  
Comprehensive Installation

There are multiple ways to install DeltaCode.


	Using the docker image for testing DeltaCode


An alternative to installing the latest DeltaCode release natively is
to build a Docker image from the included Dockerfile. The only prerequisite
is a working Docker installation.






	Installation from Source Code: Git Clone


You can clone the git source code repository and then run the configure script
to configure and install DeltaCode for local and development usage.






	Installation as a library: via pip


To use DeltaCode as a library in your application, you can install it via
pip. This is recommended for developers or users familiar with Python
that want to embed DeltaCode as a library.











Before Installing


	DeltaCode requires a Python version 3.8, 3.9 or 3.10 and is
tested on Linux, macOS, and Windows. It should work fine on FreeBSD.






System Requirements


	Hardware : DeltaCode will run best with a modern X86 64 bits processor and at
least 8GB of RAM and 2GB of disk space. These are minimum requirements.


	Supported operating systems: DeltaCode should run on these 64-bit OSes running
X86_64 processors:



	Linux: on recent 64-bit Linux distributions,


	Mac: on recent x86 64-bit macOS (10.15 and up, including 11 and 12),
Use the X86 emulation mode on Apple ARM M1 CPUs.


	Windows: on Windows 10 and up,


	FreeBSD.













Prerequisites

DeltaCode needs a Python 3.8 (or above) interpreter.


	On Linux:


Use your package manager to install atleast python3.8. If Python 3.8 is not available
from your package manager, you must compile it from sources.

For instance, visit https://github.com/dejacode/about-code-tool/wiki/BuildingPython27OnCentos6
for instructions to compile Python from sources on Centos.






	On Windows:


Download Python from this url:
https://www.python.org/

Install Python on the c: drive and use all default installer options.
See the Windows installation section for more installation details.






	On Mac:


The default Python 3 provided with macOS is 3.8.
Alternatively you can download and install Python 3.8+ from https://www.python.org/










Installation on Linux and Mac

Download and extract the latest DeltaCode release from:
https://github.com/nexB/deltacode/releases/latest

Check whether the Prerequisites are installed. Open a terminal
in the extracted directory and run:

./deltacode --help





This will configure DeltaCode and display the command line help.



Installation on Windows

Download the latest DeltaCode release zip file from:
https://github.com/nexB/deltacode/releases/latest


	In the File Explorer, select the downloaded DeltaCode zip and right-click.


	In the pop-up menu select ‘Extract All…’


	In the pop-up window ‘Extract Compressed (Zipped) Folders’ use the default options to extract.


	Once the extraction is complete, a new File Explorer window will pop up.


	In this Explorer window, select the new folder that was created and right-click.





Note

On Windows 10, double-click the new folder, select one of the files inside the folder
(e.g., ‘setup.py’), and right-click.




	In the pop-up menu select ‘Properties’.


	In the pop-up window ‘Properties’, select the Location value. Copy this to the clipboard and
close the ‘Properties’ window.


	Press the start menu button, click the search box or search icon in the taskbar.


	In the search box type:

cmd







	Select ‘cmd.exe’ or ‘Command Prompt’ listed in the search results.


	A new ‘Command Prompt’pops up.


	In this window (aka a ‘command prompt’), type ‘cd’ followed by a space and
then Right-click in this window and select Paste. This will paste the path you
copied before and is where you extracted DeltaCode:

cd path/to/extracted/deltacode







	Press Enter.


	This will change the current location of your command prompt to the root directory where
DeltaCode is installed.


	Then type:

deltacode -h







	Press enter. This first command will configure your DeltaCode installation.
Several messages are displayed followed by the DeltaCode command help.


	The installation is complete.






Un-installation


	Delete the directory in which you extracted DeltaCode.


	Delete any temporary files created in your system temp directory under a DeltaCode directory.






Using the docker image for testing DeltaCode


	In the project root directory run docker-compose up.


	This will create an image of DeltaCode with the name delta_code.


	To verify the image created run docker image ls.


	To run the image run docker run -itd –name <specific name of container>  delta_code.


	The above command runs the image in the background and creates a container with the name
as per specified.


	To execute the container in a bash mode run docker exec -it <container name> bash.


	The above command will open a bash shell in the container.


	To run the commands / pytest inside the shell you can use the commands as specified
in the documentations.






Installation from Source Code: Git Clone

You can download the DeltaCode Source Code and build from it yourself.
This is what you would want to do it if:


	You are developing DeltaCode or adding new patches or want to run tests.


	You want to test or run a specific version/checkpoint/branch from the version control.





Download the DeltaCode Source Code

Run the following once you have Git [https://git-scm.com/] installed:

git clone https://github.com/nexB/deltacode.git
cd deltacode







Configure the build

DeltaCode use a configure scripts to create an isolated virtual environment,
install required packaged dependencies.

On Linux/Mac:


	Open a terminal


	cd to the clone directory


	run ./configure


	run source venv/bin/activate




On Windows:


	open a command prompt


	cd to the clone directory


	run configure


	run venv\Scripts\activate




Now you are ready to use the freshly configured DeltaCode.


Note

For use in development, run instead configure --dev. If your face
issues while configuring a previous version, configure --clean to
clean and reset your environment. You will need to run configure again.








Installation as a library: via pip

DeltaCode can be installed from the public PyPI repository using pip which
the standard Python package management tool.

The steps are:


	Create a Python virtual environment:

/usr/bin/python3 -m venv venv









For more information on Python virtualenv, visit this
page [https://docs.python-guide.org/dev/virtualenvs/#lower-level-virtualenv].


	Activate the virtual environment you just created:

source venv/bin/activate







	Run pip to install the latest versions of base utilities:

pip install --upgrade pip setuptools wheel







	Install the latest version of DeltaCode:

pip install deltacode









To uninstall, run:

pip uninstall deltacode









            

          

      

      

    

  

    
      
          
            
  
Deltacode Output: Format, Fields and Structure

Usage: deltacode [OPTIONS]

  Identify the changes that need to be made to the 'old' scan file (-o or --old)
  in order to generate the 'new' scan file (-n or --new).  Write the results to
  a .json file (-j or --json-file) at a user-designated location.  If no file
  option is selected, print the JSON results to the console.

Options:
  -h, --help                Show this message and exit.
  --version                 Show the version and exit.
  -n, --new PATH            Identify the path to the "new" scan file [required]
  -o, --old PATH            Identify the path to the "old" scan file [required]
  -j, --json-file FILENAME  Identify the path to the .json output file
  -a, --all-delta-types     Include unmodified files as well as all changed
                            files in the .json output.  If not selected, only
                            changed files are included.






Output Formats

DeltaCode provides two output formats for the results of a DeltaCode codebase comparison: JSON
and CSV.

The default output format is JSON. If the command-line input does not include an output flag
(-j or --json-file) and the path to the output file, the results of the DeltaCode
comparison will be displayed in the console in JSON format. Alternatively, the results will be
saved to a .json file if the user includes the -j or --json-file flag and the output
file’s path, e.g.:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] -j [path to the JSON output file]





Once a user has generated a DeltaCode JSON output file, he or she can convert that JSON output
to CSV format by running a command with this structure::

python etc/scripts/json2csv.py [path to the JSON input file] [path to the CSV output file]





See also JSON to CSV Conversion.



Overall Structure


JSON

Top-Level JSON

DeltaCode’s JSON output comprises the following six fields/keys and values at the top level:


	deltacode_notice – A string of the terms under which the DeltaCode output is provided.


	deltacode_options – A JSON object containing three key/value pairs:



	--new – A string identifying the path to the JSON file containing the ScanCode
output of the codebase the user wants DeltaCode to treat as the ‘new’ codebase.


	--old – A string identifying the path to the JSON file containing the ScanCode output of
the codebase the user wants DeltaCode to treat as the ‘old’ codebase.


	
	--all-delta-types – A true or false value.
	
	This value will be true if the command-line input includes the -a or
--all-delta-types flag, in which case the deltas field described below will include
details for unmodified files as well as all changed files.


	If the user does not include the -a or --all-delta-types flag, the value will be
false and unmodified files will be omitted from the DeltaCode output.

















	deltacode_version – A string representing the version of DeltaCode on which the codebase
comparison was run.


	deltacode_errors – A list of one or more strings identifying errors (if any) that occurred
during the codebase-comparison process.


	deltas_count – An integer representing the number of ‘Delta’ objects – the file-level
comparisons of the two codebases (discussed in the next section) – contained in the DeltaCode
output’s deltas key/value pair.



	If the user’s command-line input does not include the -a or --all-delta-types flag
(see the discussion above of the --all-delta-types field/key), the DeltaCode output will
omit details for unmodified files and consequently the deltas_count field will not include
unmodified files.









	deltas – A list of ‘Delta’ objects, each of which represents a file-level comparison (i.e.,
the “delta”) of the ‘new’ and ‘old’ codebases. The Delta object is discussed in further detail
in the next section.




This is the top-level JSON structure of the key/value pairs described above:

{
  "deltacode_notice": "",
  "deltacode_options": {
    "--new": "",
    "--old": "",
    "--all-delta-types": false
  },
  "deltacode_version": "",
  "deltacode_errors": [],
  "deltas_count": 0,
  "deltas": [one or more Delta objects]
}





The Delta Object

Each Delta object consists of four key/value pairs:


	factors: A list of one or more strings representing the factors that characterize the
file-level comparison and are used to calculate the resulting score, e.g.

"factors": [
      "added",
      "license info added",
      "copyright info added"
    ],









The possible values for the factors field are discussed in some detail in DeltaCode Scoring
Deltacode Scoring.


	score: An integer representing the magnitude/importance of the file-level change – the
higher the score, the greater the change. For further details about the DeltaCode scoring
system, see DeltaCode Scoring Deltacode Scoring.


	new: A ‘File’ object containing key/value pairs of certain ScanCode-based file attributes
(path, licenses, copyrights etc.) for the file in the codebase designated by the
user as new. If the Delta object represents the removal of a file (the factors value
would be removed), the value of new will be null.


	old: A ‘File’ object containing key/value pairs of certain ScanCode-based file attributes
for the file in the codebase designated by the user as old. If the Delta object represents
the addition of a file (the factors value would be added), the value of old will be
null.




The JSON structure of a Delta object looks like this::

{
  "factors": [],
  "score": 0,
  "new": {
    "path": "",
    "type": "",
    "name": "",
    "size": 0,
    "sha1": "",
    "original_path": "",
    "licenses": [],
    "copyrights": []
  },
  "old": {
    "path": "",
    "type": "",
    "name": "",
    "size": 0,
    "sha1": "",
    "original_path": "",
    "licenses": [],
    "copyrights": []
  }
}





The File Object

As you saw in the preceding section, the File object has the following JSON structure::

{
  "path": "",
  "type": "",
  "name": "",
  "size": 0,
  "sha1": "",
  "original_path": "",
  "licenses": [],
  "copyrights": []
}





A File object consists of eight key/value pairs:


	path: – A string identifying the path to the file in question.
In processing the ‘new’ and ‘old’ codebases to be compared, DeltaCode may modify the codebases’
respective file paths in order to properly align them for comparison purposes. As a result, a
File object’s path value may differ to some extent from its original_path value
(see below).


	type: – A string indicating whether the object is a file or a directory.


	name: – A string reflecting the name of the file.


	size: – An integer reflecting the size of the file in KB.


	sha1: – A string reflecting the file’s sha1 value.


	original_path: – A string identifying the file’s path as it exists in the codebase, prior to
any processing by DeltaCode to modify the path for purposes of comparing the two codebases.


	licenses: – A list of License objects reflecting all licenses identified by ScanCode as
associated with the file. This list can be empty.


	copyrights: – A list of Copyright objects reflecting all copyrights identified by ScanCode
as associated with the file. This list can be empty.




Example of Detailed JSON output

Here is an example of the detailed DeltaCode output in JSON format displaying one Delta object
in the deltas key/value pair – in this case, an excerpt from the JSON output of a
DeltaCode comparison of zlib-1.2.11 and zlib-1.2.9::

{
  "deltacode_notice": "Generated with DeltaCode and provided on an \"AS IS\" BASIS, WITHOUT WARRANTIES\nOR CONDITIONS OF ANY KIND, either express or implied. No content created from\nDeltaCode should be considered or used as legal advice. Consult an Attorney\nfor any legal advice.\nDeltaCode is a free software codebase-comparison tool from nexB Inc. and others.\nVisit https://github.com/nexB/deltacode/ for support and download.",
  "deltacode_options": {
    "--new": "C:/scans/zlib-1.2.11.json",
    "--old": "C:/scans/zlib-1.2.9.json",
    "--all-delta-types": false
  },
  "deltacode_version": "1.0.0.post49.e3ff7be",
  "deltacode_errors": [],
  "deltas_count": 40,
  "deltas": [
    {
      "factors": [
        "modified"
      ],
      "score": 20,
      "new": {
        "path": "trees.c",
        "type": "file",
        "name": "trees.c",
        "size": 43761,
        "sha1": "ab030a33e399e7284b9ddf9bba64d0dd2730b417",
        "original_path": "zlib-1.2.11/trees.c",
        "licenses": [
          {
            "key": "zlib",
            "score": 60.0,
            "short_name": "ZLIB License",
            "category": "Permissive",
            "owner": "zlib"
          }
        ],
        "copyrights": [
          {
            "statements": [
              "Copyright (c) 1995-2017 Jean-loup Gailly"
            ],
            "holders": [
              "Jean-loup Gailly"
            ]
          }
        ]
      },
      "old": {
        "path": "trees.c",
        "type": "file",
        "name": "trees.c",
        "size": 43774,
        "sha1": "1a554d4edfaecfd377c71b345adb647d15ff7221",
        "original_path": "zlib-1.2.9/trees.c",
        "licenses": [
          {
            "key": "zlib",
            "score": 60.0,
            "short_name": "ZLIB License",
            "category": "Permissive",
            "owner": "zlib"
          }
        ],
        "copyrights": [
          {
            "statements": [
              "Copyright (c) 1995-2016 Jean-loup Gailly"
            ],
            "holders": [
              "Jean-loup Gailly"
            ]
          }
        ]
      }
    },
    [additional Delta objects if any]
  ]
}







CSV

Compared with DeltaCode’s JSON output, the CSV output is relatively simple, comprising the
following seven fields as column headers, with each row representing one Delta object:


	Score – An integer representing the magnitude/importance of the file-level change.


	Factors – One or more strings – with no comma or other separators – representing the
factors that characterize the file-level comparison and are used to calculate the resulting
score.


	Path – A string identifying the file’s path in the ‘new’ codebase unless the Delta object
reflects a removed file, in which case the string identifies the file’s path in the ‘old’
codebase. As noted above, this path may vary to some extent from the file’s actual path in its
codebase as a result of DeltaCode processing for codebase comparison purposes.


	Name – A string reflecting the file’s name in the ‘new’ codebase unless the Delta object
reflects a removed file, in which case the string reflects the file’s name in the ‘old’
codebase.


	Type – A string reflecting the file’s type (‘file’ or ‘directory’) in the ‘new’ codebase
unless the Delta object reflects a removed file, in which case the string reflects the file’s
type in the ‘old’ codebase.


	Size – An integer reflecting the file’s size in KB in the ‘new’ codebase unless the Delta
object reflects a removed file, in which case the string reflects the file’s size in the
‘old’ codebase.


	Old Path – A string reflecting the file’s path in the ‘old’ codebase if the Delta object
reflects a moved file. If the Delta object does not involve a moved file, this field is
empty. As with the Path field/column header above, this path may differ to some extent from
the file’s actual path in its codebase due to DeltaCode processing for codebase comparison
purposes.









            

          

      

      

    

  

    
      
          
            
  
Deltacode Scoring


Delta Objects


A File-Level Comparison of Two Codebases

A Delta object represents the file-level comparison (i.e., the “delta”) of two codebases, typically
two versions of the same codebase, using ScanCode-generated JSON output files as input for the
comparison process.

Based on how the user constructs the command-line input, DeltaCode’s naming convention treats one
codebase as the “new” codebase and the other as the “old” codebase::

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] [...]







Basic Scoring

A DeltaCode codebase comparison produces a collection of file-level Delta objects. Depending on
the nature of the file-level change between the two codebases, each Delta object is characterized
as belonging to one of the categories listed below. Each category has an associated score intended
to convey its potential importance – from a license/copyright compliance perspective – to a
user’s analysis of the changes between the new and old codebases.

In descending order of importance, the categories are:


	added: A file has been added to the new codebase.


	modified: The file is contained in both the new and old codebase and has been
modified (as reflected, among other things, by a change in the file’s sha1 attribute).


	moved: The file is contained in both the new and old codebase and has been moved but
not modified.


	removed: A file has been removed from the old codebase.


	unmodified: The file is contained in both the new and old codebase and has not been
modified or moved.





Note

Files are determined to be Moved by looping thru the added and removed Delta objects and
checking their sha1 values.



The score of a Delta object characterized as added or modified may be increased based on
the detection of license- and/or copyright-related changes. See
License Additions and Changes and Copyright Holder Additions and Changes below.



Delta Object Fields and Values

Each Delta object includes the following fields and values:


	factors: One or more strings representing the factors that characterize the file-level
comparison and resulting score, e.g., in JSON format::

"factors": [
  "added",
  "license info added",
  "copyright info added"
],







	score: A number representing the magnitude/importance of the file-level change – the
higher the score, the greater the change.


	new: The ScanCode-based file attributes (path, licenses, copyrights etc.)
for the file in the codebase designated by the user as new.


	old: The ScanCode-based file attributes for the file in the codebase designated by the user
as old.




Note that an added Delta object will have a new file but no old file, while a
removed Delta object will have an old file but not a new file. In each case, the
new and old keys will be present but the value for the missing file will be null.




License Additions and Changes

Certain file-level changes involving the license-related information in a Delta object will
increase the object’s score.


	An added Delta object’s score will be increased:



	If the new file contains one or more licenses (factors will include
license info added).


	If the the new file contains any of the following Commercial/Copyleft license
categories (factors will include, e.g., copyleft added):



	‘Commercial’


	‘Copyleft’


	‘Copyleft Limited’


	‘Free Restricted’


	‘Patent License’


	‘Proprietary Free’
















	A modified Delta object’s score will be increased:



	If the old file has at least one license and the new file has no licenses
(factors will include license info removed).


	If the old file has no licenses and the new file has at least one license
(factors will include license info added).


	If both the old file and new file have at least one license and the license
keys are not identical (e.g., the old file includes an mit license and an
apache-2.0 license and the new file includes only an mit license)
(factors will include license change).


	If any of the Commercial/Copyleft license categories listed above are found in the
new file but not in the old file (factors will include, e.g.,
proprietary free added).













Copyright Holder Additions and Changes


	An added Delta object’s score will be increased if the new file contains one or more
copyright holders (factors will include copyright info added).


	A modified Delta object’s score will be increased:



	If the old file has at least one copyright holder and the new file has no
copyright holders (factors will include copyright info removed).


	If the old file has no copyright holders and the new file has at least one
(actors will include copyright info added).


	If both the old file and new file have at least one copyright holder and
the holders are not identical (factors will include copyright change).













Moved, Removed and Unmodified

As noted above in Basic Scoring Basic Scoring, from a license/copyright compliance
perspective, the three least significant Delta categories are moved, removed and
unmodified.

In the current version of DeltaCode, each of these three categories is assigned a score of 0, with
no options to increase that score depending on the content of the Delta object.

However, it is possible that both moved and removed will be assigned some non-zero score in
a future version. In particular, removed could be significant from a compliance viewpoint
where, for example, the removal of a file results in the removal of a Commercial/Copyleft license
obligation.





            

          

      

      

    

  

    
      
          
            
  
Development

TL;DR:


	Contributions comes as bugs/questions/issues and as pull requests.


	Source code and runtime data are in the /src/ directory.


	Test code and test data are in the /tests/ directory.


	Datasets (inluding licenses) and test data are in /data/ sub-directories.


	We use DCO signoff in commit messages, like Linux does.




See CONTRIBUTING.rst for details:
https://github.com/nexB/deltacode/blob/develop/CONTRIBUTING.rst


Code layout and conventions

Source code is in the src/ directory, tests are in the tests/ directory.
Miscellaneous scripts and configuration files are in the etc/ directory.

There is one Python package for each major feature under src/ and a
corresponding directory with the same name under tests (but this is not a
package by design as it would not make sense to have a top level “tests” package
which is a name that’s too common).

Each test script is named test_XXXX; we prefer organizing tests in subclasses
of the standard library unittest module. But we also use plain functions
that are discovered nicely by pytest.

When source or tests need data files, we store these in a data subdirectory.

We use PEP8 conventions with a relaxed line length that can be up to 90’ish
characters long when needed to keep the code clear and readable.

We write tests, a lot of tests, thousands of tests.  When finding bugs or adding
new features, we add tests. See existing test code for examples which form also
a good specification for the supported features.

The tests should pass on Linux 64 bits, Windows 64 bits and on
macOS 10.14 and up. We maintain multiple CI loops with Azure (all OSes)
at https://dev.azure.com/nexB/deltacode/_build and Appveyor (Windows) at
https://ci.appveyor.com/project/nexB/deltacode.

Several tests are data-driven and use data files as test input and sometimes
data files as test expectation (in this case using either JSON or YAML files);
a large number of copyright, license and package manifest parsing tests are such
data-driven tests.



Running tests

DeltaCode comes with over 29,000 unit tests to ensure detection accuracy and
stability across Linux, Windows and macOS OSes: we kinda love tests, do we?

We use pytest to run the tests: call the pytest script to run the whole
test suite. This is installed with the pytest package which is installed
when you run ./configure --dev).

If you are running from a fresh git clone and you run ./configure and then
source venv/bin/activate the pytest command will be available in your path.

Alternatively, if you have already configured but are not in an activated
“virtualenv” the pytest command is available under
<root of your checkout>/venv/bin/pytest

(Note: paths here are for POSIX, but mostly the same applies to Windows)

If you have a multiprocessor machine you might want to run the tests in parallel
(and faster). For instance: pytest -n4 runs the tests on 4 CPUs. We
typically run the tests in verbose mode with pytest -vvs -n4.

See also https://docs.pytest.org for details or use the pytest -h command
to show the many other options available.

One useful option is to run a select subset of the test functions matching a
pattern with the -k option, for instance: pytest -vvs -k tcpdump would
only run test functions that contain the string “tcpdump” in their name or their
class name or module name.

Another useful option after a test run with some failures is to re-run only the
failed tests with the --lf option, for instance: pytest -vvs --lf would
only run only test functions that failed in the previous run.



Thirdparty libraries and dependencies management

DeltaCode uses the configure and configure.bat scripts to install a
virtualenv [https://virtualenv.pypa.io/en/stable/] , install required
packaged dependencies using  setuptools [https://github.com/pypa/setuptools]
and such that DeltaCode can be installed in a repeatable and consistent manner on
all OSes and Python versions.

For this we maintain a setup.cfg with our direct dependencies with loose
minimum version constraints; and we keep pinned exact versions of these
dependencies in the requirements.txt and requirements-dev.txt (for
testing and development).

And to ensure that we also all use well known version of the core virtualenv,
pip, setuptools and wheel libraries, we use the virtualenv.pyz Python
zipp app from https://github.com/pypa/get-virtualenv/tree/master/public and
store it in the Git repo in the etc/thirdparty directory.

DeltaCode app archives should not require network access for installation or
configuration of its third-party libraries and dependencies. To enable this,
we store bundled thirdparty components and  libraries in the thirdparty
directory of released app archives; this is done at build time.
These dependencies are stored as pre-built wheels. These wheels are sometimes
built by us when there is no wheel available upstream on PyPI. We store all
these prebuilt wheels with corresponding .ABOUT and .LICENSE files in
https://github.com/nexB/thirdparty-packages/tree/main/pypi which is published
for download at  https://thirdparty.aboutcode.org/pypi/

Because this is used by the configure script, all the thirdparty dependencies
used in DeltaCode MUST be available there first. Therefore adding a new
dependency means requesting a merge/PR in
https://github.com/nexB/thirdparty-packages/ first that contains all the
recursive dependencies.

There are utility scripts in etc/release that can help with the dependencies
management process in particular to build or update wheels with native code for
multiple OSes (Linux, macOS and Windows) and multiple Python versions (3.7+),
which is not a completely simple operation (and requires eventually 12 wheels
and one source distribution to be published as we support 3 OSes and 4 Python
versions).


Using DeltaCode as a Python library

DeltaCode can be used alright as a Python library and is available as as a
Python wheel in Pypi and installed with pip install deltacode






            

          

      

      

    

  

    
      
          
            
  
JSON to CSV Conversion

The default output format for a DeltaCode codebase comparison is JSON.  If the -j or
--json-file option is included in the deltacode command, the output will be written to a
.json file at the user-designated location.  For example:

deltacode -n [path to the 'new' codebase] -o [path to the 'old' codebase] -j [path to the JSON output file]





We have also created an easy-to-use script for users who want to convert their JSON output to CSV
format.  Located at etc/scripts/json2csv.py, the conversion can be run with this command
template:

python etc/scripts/json2csv.py [path to the JSON input file] [path to the CSV output file]








            

          

      

      

    

  

    
      
          
            
  
Release Process


Steps to cut a new release:

run bumpversion with major, minor or patch to bump the version in:

src/deltacode/__init__.py
setup.py
deltacode.ABOUT





Update the CHANGELOG.rst
commit changes and push changes to develop:

git commit -m "commit message"
git push --set-upstream origin develop





merge develop branch in master and tag the release.

git checkout master
git merge develop
git tag -a v1.6.1 -m "Release v1.6.1"
git push --set-upstream origin master
git push --set-upstream origin v1.6.1





Draft a new release in GitHub, using the previous release blurb as a base. Highlight new and
noteworthy changes from the CHANGELOG.rst.

Run etc/release/release.sh locally.

Upload the release archives created in the dist/ directory to the GitHub release page.

Save the release as a draft. Use the previous release notes to create notes in the same style.
Ensure that the link to thirdparty source code is present.

Test the downloads.

Publish the release on GitHub

Then build and publish the released wheel on Pypi. For this you need your own Pypi credentials
(and get authorized to publish Pypi release: ask @pombredanne) and you need to have the twine
package installed and configured.

Build a .whl with python setup.py bdist_wheel
Run twine with twine upload dist/<path to the built wheel>
Once uploaded check the published release at https://pypi.python.org/pypi/deltacode/
Then create a new fresh local virtualenv and test the wheel installation with:
pip install deltacode





            

          

      

      

    

  

    
      
          
            
  
Google Summer of Code 2021 - Final report


Project: Virtual Codebase support in DeltaCode

Pratik Dey <pratikrocks.dey11@gmail.com>



Project Overview

The goal of this proposal is to refactor DeltaCode to use Scancode-Toolkit’s Virtual
Codebase class. This refactoring will allow DeltaCode to be a library as opposed to
only be used as a CLI tool, moreover, this refactor will allow DeltaCode to determine
deltas much more effectively in the form of BFS tree scan of the two tree structures
unlike indexing the entire codebase.



Main Objectives of the project


	Migrate to using VirtualCodebase from the latest scancode.


	Create DeltaCode documentation on Read The Docs.


	Provide the support for fingerprint plugin for Virtual Codebase.


	Provide the Support for enabling Virtual Codebase to scan files having full root paths
as their location.






The Project


	Virtual Codebase Integration with Deltacode


	Removing redundant File and License Objects


	Provided options in deltacode scans


	Added Docker Script for Dockerizing the Deltacode Application and make it platform-independent.


	Add Read the Docs Support to Deltacode.




I have completed all the tasks that were in the scope of this GSoC project.



Pull Requests


	https://github.com/nexB/deltacode/pull/167 [Merged]


	https://github.com/nexB/deltacode/pull/176 [Open]


	https://github.com/nexB/deltacode/pull/171 [Open]


	https://github.com/nexB/deltacode/pull/178 [Open]


	https://github.com/nexB/deltacode/pull/168 [Open]






Links


	Project Details [https://summerofcode.withgoogle.com/archive/2021/projects/6580434925780992]


	Proposal [https://docs.google.com/document/d/19btijAja6x8hbD_X-dGor1RiiEGF3-1gEHYkzqzC3xQ/edit]


	ScanCode Toolkit [https://github.com/nexB/scancode-toolkit]


	DeltaCode [https://github.com/nexB/deltacode]






I’ve had a wonderful time during these three months and have learned plenty of things. I would
really like to thank @pombredanne [https://github.com/pombredanne],
@steven-esser [https://github.com/steven-esser], and @JonoYang [https://github.com/JonoYang] for their
constant support throughout the journey. From good job claps to nit-picky constructive
code-reviews, I enjoyed every bit of this GSoC project.

I had a wonderful time during the GSOC, I learned a lot of things during this time.I really
enjoyed this project. I would really like to thank my mentors
@pombredanne [https://github.com/pombredanne],
@steven-esser [https://github.com/steven-esser], and @TG1999 [https://github.com/TG1999],
and all other About code members who constantly supported me throughout this project.





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to DeltaCode’s documentation!
        


        		
          DeltaCode Documentation
          
            		
              Comprehensive Installation
              
                		
                  Before Installing
                


                		
                  System Requirements
                


                		
                  Prerequisites
                


                		
                  Installation on Linux and Mac
                


                		
                  Installation on Windows
                


                		
                  Un-installation
                


                		
                  Using the docker image for testing DeltaCode
                


                		
                  Installation from Source Code: Git Clone
                


                		
                  Installation as a library: via pip
                


              


            


            		
              Deltacode Output: Format, Fields and Structure
              
                		
                  Output Formats
                


                		
                  Overall Structure
                


              


            


            		
              Deltacode Scoring
              
                		
                  Delta Objects
                


                		
                  License Additions and Changes
                


                		
                  Copyright Holder Additions and Changes
                


                		
                  Moved, Removed and Unmodified
                


              


            


            		
              Development
              
                		
                  Code layout and conventions
                


                		
                  Running tests
                


                		
                  Thirdparty libraries and dependencies management
                


              


            


            		
              JSON to CSV Conversion
            


            		
              Release Process
              
                		
                  Steps to cut a new release:
                


              


            


            		
              Google Summer of Code 2021 - Final report
              
                		
                  Project: Virtual Codebase support in DeltaCode
                


                		
                  Project Overview
                


                		
                  Main Objectives of the project
                


                		
                  The Project
                


                		
                  Pull Requests
                


                		
                  Links
                


              


            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





